Separation techniques in clinical / Pharmaceutical Chemistry

Innovations in separation science for improved sensitivity and cost-efficiency, increased speed, higher sample throughput and lower solvent consumption in the assessment, evaluation, and validation of emerging drug compounds. It investigates breakthroughs in sample pretreatment, HPLC, mass spectrometry, capillary electrophoresis and therapeutic drug monitoring for improved productivity, precision, and safety in clinical chemistry, biomedical analysis, and forensic research. The most common instrumental chromatographic method used in the clinical laboratory is the gas-liquid chromatography. Separation Techniques in Clinical Chemistry is a thorough single-source guide for analytical, organic, pharmaceutical, medicinal, physical, surface, and colloid chemists and biochemists; and upper-level undergraduate and graduate students in these disciplines. Four detection methods commonly used with gas chromatography are thermal conductivity, flame ionization, nitrogen/phosphorous, and mass spectrometry. The thermal conductivity detector takes advantage of variations in thermal conductivity between the carrier gas and the gas being measured. Advances in Chromatographic Techniques for Therapeutic Drug Monitoring is a comprehensive reference describing the theory and application of therapeutic drug monitoring in clinical laboratories.The technological innovations in clinical chemistry analyzers have led to early disease detection and specialized diagnosis in the areas of oncology, gynecology, & endocrinology and enabled testing on a larger scale. The advancements comprise advanced modeling & parameter estimation, better resolution, improved pattern recognition, computer-assisted interpretation, and artificial intelligence